US009223595B2

a2z United States Patent (10) Patent No.: US 9,223,595 B2
Campbell et al. 45) Date of Patent: Dec. 29, 2015
(54) MECHANISM FOR COMPARISON OF (58) Field of Classification Search

DISPARATE DATA IN DATA STRUCTURES

CPC . GOGF 17/30; GOGF 17/30985

— . USPC ottt 707/758
(71) Applicant: ;l{?S)Matth'ks, Inc., Natick, MA See application file for complete search history.
(72) Inventors: Andrew T. Campbell, Medway, MA (56) References Cited
(US); Gerhard P. Stoeckel, Natick, MA U.S. PATENT DOCUMENTS
(US); David M. Saxe, Stow, MA (US);
Gregory V. Aloe, Jamaica Plain, MA 5,729,659 A * 3/1998 Potterccccovvverennnn 704/270
(US): Ajay B. Puvvala, Brighton, MA SRR BI+ 22000 Buer o s
. f . ,348, UET .ovvrevnrnenns
(US); David Hruska, Chestnut Hill, MA 2005/0002473 Al* 1/2005 Kloperetal. 375316
(Us) 2008/0019464 Al* 1/2008 Kloperetal. 375/340
2012/0096310 Al* 4/2012 Varanasietal. 714/15
(73) Assignee: The MathWorks, Inc., Natick, MA . .
* cited by examiner
(US)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Joshua Bullock
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Harrity & Harrity, LLP
U.S.C. 154(b) by 73 days.
57 ABSTRACT
- NO- ’ evice receives a first result that includes first data, and a
o second result that includes second data, and determines
(22) Filed: Dec. 5,2012 whether a comparator supports the first data and the second
(65) Prior Publication Data data. When the comparator supports the first data and the
second data, the device utilizes the comparator to select com-
US 2014/0156689 Al Jun. 5, 2014 parison logic for the first data of the first result and for the
second data of the second result, compares the first result and
(51) Int.CL the second result, using the selected comparison logic, to
GO6F 17/30 (2006.01) determine whether the first result is equivalent to the second
GOGF 9/455 (2006.01) result, and outputs or stores the determination of whether the
(52) US.CL first result is equivalent to the second result.
CPC GO6F 9/455 (2013.01); GOG6F 17/30985
(2013.01) 20 Claims, 10 Drawing Sheets
950 g,
1000 DETERMINE FIRST COMPARISON LOGIC OF
COMPARATOR LIST THAT MATCHES FIRET DATA
N % V.
DETERMINE SECOND COMPARISON LOGIC OF
1010 e COMPARATOR LIST THAT MATCHES SECOND

DATA

¥

1020 e

OUTPUT FIRST / SECOND COMPARISON LOGIC AS
SELECTED COMPARISON LOGIC FOR FIRST
RESULT / SECOND RESULT

US 9,223,595 B2

Sheet 1 of 10

Dec. 29, 2015

U.S. Patent

NOLLYWHOAN]
DLLSONOVIC

|

v

HNSa) pUoLSs
oy ofjenbisy
Hnsad 1siy sy

o enb3sy]
A5V 1541

& VIVQ/ 2 LNs3y

n

w

NOILYNINGZ130

DNILSIL

K

|

4

L WAVO /L LINGEY

|

4000 401

B AATAMTEAD

US 9,223,595 B2

Sheet 2 of 10

Dec. 29, 2015

U.S. Patent

824
4014

0C¢ - A0IAHA "AAHAS

i34

HHOM AN

0%
401

01¢ - A0IA-4A INIHO

US 9,223,595 B2

Sheet 3 of 10

Dec. 29, 2015

U.S. Patent

0oE 5IE —
FOVAHILN 351A30
NOILLYDINAWINOD 1NdiN0 J0IA30 LNdNi
ypsis - e 57
301A30 . AHONIN LINA
OVHOLS NIVIA ONISSIOON

OLe

\\\\ SNg

US 9,223,595 B2

Sheet 4 of 10

Dec. 29, 2015

U.S. Patent

0¥ bF47
ANIDNS SHALLILNG
NGILLNDEXE TWOHAYHD
147
%% HOLIOS
SYT0TE WHOVYId
HO0E

US 9,223,595 B2

Sheet 5 of 10

Dec. 29, 2015

U.S. Patent

{048} NOLLYIWNHOANI
LSONSVIC

|

v

NS PUONeS

{0ss) logjenbgsy)

syl ojenbIs) B
HNsad s oy

)

(0a%)
NOILYNINEZ 130

H485Y0 1831
{ovs)
o YiVQ/Z 1NsEY
]
[opxs %45
ONILSHL “SO00 4010

]

{0es)

L YLVA/ L LINS3d

US 9,223,595 B2

Sheet 6 of 10

Dec. 29, 2015

U.S. Patent

{nsg) logjenbasy]
A8YO 183L

{0og)
NOILYNINYZ13a W

r

{073} Yiva
1H0OddNS LON 8304

{0ps)
Z YivQa/Z NS

- 019
NOLLYNINSZ LG

003
HOLYHYIWNGD

M (0£9)
| 01907 NOSRIVAWOD
0vS 0€9

(0£5)
L YIYa/ L LINSTY

US 9,223,595 B2

Sheet 7 of 10

Dec. 29, 2015

U.S. Patent

{pislg+e

{002} 1By ussse asensa)]
A8YD 1SHL

%

(094} § = B et

4

{Ov) 1891

!

{LuoipiedionWoISns
‘Buisn, ‘GO enb3s) BBy | ESSE B58058]

{0G4)
VYO QFLH0H4NSNN

)

{0LS) ONILSHL

(0zs) g

{oLl) e

US 9,223,595 B2

Sheet 8 of 10

Dec. 29, 2015

U.S. Patent

(o148
1817 HOLVHYLROD

ioiedwonoaign

joieduwonbuns

soeredwoseoifon

(028} DID0T NOSINYINOD ~d

eieduionousuInN

joeieduwionionns

ioeseduwionien

4

)

{009} HOLYHYARNOD

{oze) {ssiedgindul “Buys, ‘¢} = gjep

US 9,223,595 B2

Sheet 9 of 10

Dec. 29, 2015

U.S. Patent

Yivd

~

ALITVNIOIN
|/ ALITIVADE 40 NOILYNINRZLEIA 300187 LNd N0 |

4

IWNDENN/ TYN0E
A1 ANINYELEA OL 01907 NOSIHYJNGD HLIM

~,

" 046

- 096

LINS3AH ANODAS / LINS3Y LS 3UvdNGD

", v

4

4 y

UINS3d ANODIEE 7 LINSH L83 &04 DID071
- NOSIHYJWNOD 1037145 OL JOLVHYANOD 220110

STA 4

4 3

YIVQ ONOOIS / VAVA 1SHid

A3LHOddNSND 40
NOLLYDICON! 3aIAOHd | ON

)

0v6

S1HCAANS HOLVHYJWOD H3HIIHM INIWGEELE0

%, »

3

¥ivad ONODES
SHANTONI LvHL INNS3d GNODES 3AIEDEY

4

YivQd
1844 SFAMIONI LVHL LINSHy L5414 3AI303d

™,

" 086

-~ 086

o 306

" 316

US 9,223,595 B2

Sheet 10 of 10

Dec. 29, 2015

U.S. Patent

LINSdy GNOD23S 7 1INSEY
18414 HO4 210071 NOSIHVAWOD 03103748

SY SID0T NOSIIVAWOD ONODIS / LSdid INdLNo

4

7

L-ARA4A
GNO238 SFHOLYIN LVHL LS JOLYEYJWNOD
40 OID07T NOSIEVYAWOD ONOD38 INIWGZ 130

o,

3

VIVO LSHI SFHOIYIA LVHL LS HOLVHYAINGD
40 DIO0T NOSRIVANOS 1SYH ININGE LA

- 0801

" 0101

-~ 0001

US 9,223,595 B2

1
MECHANISM FOR COMPARISON OF
DISPARATE DATA IN DATA STRUCTURES

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more implementations and, together with the description,
explain these implementations. In the drawings:

FIG. 1 is a diagram of an overview of an example imple-
mentation described herein;

FIG. 2 is a diagram of an example environment in which
systems and/or methods described herein may be imple-
mented;

FIG. 3 is a diagram of example components of one or more
of the devices of the environment depicted in FIG. 2;

FIG. 4 is a diagram of example functional components of a
technical computing environment (TCE) that may be used by
one or more of the devices of the environment depicted in
FIG. 2;

FIG. 5 is a diagram of example operations capable of being
performed by the TCE;

FIG. 6 is a diagram of example functional components of a
testing component of the TCE;

FIG. 7 is a diagram of example operations capable of being
performed by the testing component;

FIG. 8 is a diagram of example operations capable of being
performed by a comparator component of the testing compo-
nent; and

FIGS. 9 and 10 are flow charts of an example process for
comparing disparate data in arbitrarily complex data struc-
tures.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements.

A technical computing environment (TCE) may provide a
computing environment that allows users to perform tasks
related to disciplines, such as, but not limited to, mathematics,
science, engineering, medicine, business, etc., more effi-
ciently than if the tasks were performed in another type of
computing environment, such as an environment that requires
the user to develop code in a conventional programming
language, such as C++, C, Fortran, Pascal, etc. In one
example, a TCE may include a dynamically-typed program-
ming language (e.g., the M language, a MATLAB® lan-
guage, a MATLAB-compatible language, a MATLAB-like
language, etc.) that can be used to express problems and/or
solutions in mathematical notations.

Code generated by the TCE may be tested to determine
whether the code will function properly (e.g., when
executed). In a simple example, the code may be output as a
simulation and an executable. The simulation code may be
executed to generate simulation results, and the executable
code may be executed to generate executable results. The
simulation results and the executable results may be tested to
determine whether the simulation results are equivalent to the
executable results. However, comparing such results may be
difficult when the results include disparate data in complex
data structures.

OVERVIEW

Systems and/or methods described herein may compare
disparate data in arbitrarily complex data structures in order

10

15

20

25

30

35

40

45

50

55

60

65

2

to determine whether the data structures are equivalent (e.g.,
pass or fail a qualification test). In one example, the systems
and/or methods may provide a comparator application pro-
gramming interface (API) that enables a tester of program
code to compare complex data structures (e.g., cell arrays,
structure arrays, etc.). The data structures may include many
different types of data and each data type may require difter-
ent methods of comparison. The single comparator API may
recursively compare all elements of a data structure so that
each element may utilize comparison logic that is appropriate
for that element.

FIG. 1 is a diagram of an overview of an example imple-
mentation described herein. As shown in FIG. 1, a computing
environment, such as a technical computing environment
(TCE), may include a testing component. The testing com-
ponent may receive results generated by TCE code, and may
test the results to determine whether the code functions prop-
erly.

As further shown in FIG. 1, the testing component may
receive results generated by TCE code. The TCE code may
include text-based code that may require further processing to
execute, binary code that may be executed, text files that may
be executed in conjunction with other executables, etc. In one
example, the TCE code may be executed to generate a first
result that includes first data. The TCE code may again be
executed to generate a second result that includes second
data. In one example, the first result may be generated by a
simulation version of the TCE code, and the second result
may be generated by an executable version of the TCE code.
The first data and the second data may be the same type or
different types, and may include floating point values, cell
arrays, structure arrays, simulation output data, etc. The test-
ing component may receive a test case to be applied to the first
result and the second result. For example, the test case may
include a test (e.g., IsEqualTo) to determine whether the first
result is equivalent to the second result.

The testing component may determine whether a compara-
tor, of the testing component, supports the first data and the
second data. If the comparator does not support the first data
and/or the second data, the testing component may provide
(e.g., display) an indication of an unsupported data in the first
result and/or the second result. If the comparator supports the
first data and the second data, the testing component may
utilize the comparator to select comparison logic that is
appropriate for the first data of the first result and the second
data of the second result.

In one example implementation, the comparator may
include a set (e.g., a list) of comparison logic that may be used
to support different data structures. For example, the list may
include comparison logic for cell arrays, structure arrays,
numeric data, logical data, string data, object data, etc. The
testing component may determine first comparison logic of
the list that matches the first data, and may determine second
comparison logic of the list that matches the second data. The
comparator may output the first comparison logic as the
selected comparison logic that is appropriate for the first data
of the first result. The comparator may output the second
comparison logic as the selected comparison logic that is
appropriate for the second data of the second result.

The testing component may compare the first result and the
second result, using the selected comparison logic and based
on the test case, to determine whether the first result is equal
to the second result. The testing component may output a
determination of whether the first result is equal to the second
result. If the first result equals the second result, the testing
component may output (e.g., display) and/or store diagnostic
information indicating the equivalence of the first result and

US 9,223,595 B2

3

the second result. For example, as shown in FIG. 1, the diag-
nostic information may state: “The first result IsEqualTo the
second result.” If the first result does not equal the second
result, the testing component may output (e.g., display) and/
or store diagnostic information indicating the nonequivalence
of the first result and the second result.

The terms “code” and “program code,” as used herein, are
to beused interchangeably and are to be broadly interpreted to
include text-based code (e.g., C++ code, Hardware Descrip-
tion Language (HDL) code, very-high-speed integrated cir-
cuits (VHSIC) HDIL(VHDL) code, Verilog, Java, and/or other
types of hardware or software based code that may be com-
piled and/or synthesized); binary code that may be executed
(e.g., executable files that may directly be executed by an
operating system, bitstream files that can be used to configure
a field programmable gate array (FPGA), Java byte code,
object files combined together with linker directives, source
code, makefiles, etc.); text files that may be executed in con-
junction with other executables (e.g., Python text files, a
collection of dynamic-link library (DLL) files with text-based
combining, configuration information that connects pre-com-
piled modules, an extensible markup language (XML) file
describing module linkage, etc.); etc. In one example, code
may include different combinations of the above-identified
classes (e.g., text-based code, binary code, text files, etc.).
Alternatively, or additionally, code may include code gener-
ated using a dynamically-typed programming language (e.g.,
the M language, a MATLAB® language, a MATLAB-com-
patible language, a MATL. AB-like language, etc.) that can be
used to express problems and/or solutions in mathematical
notations. Alternatively, or additionally, code may be of any
type, such as function, script, object, etc., and a portion of
code may include one or more characters, lines, etc. of the
code.

Example Environment Arrangement

FIG. 2 is a diagram of an example environment 200 in
which systems and/or methods described herein may be
implemented. As illustrated, environment 200 may include a
client device 210 interconnected with a server device 220 via
a network 230. Components of environment 200 may inter-
connect via wired and/or wireless connections. A single client
device 210, server device 220, and network 230 have been
illustrated in FIG. 2 for simplicity. In practice, environment
200 may include more client devices 210, server devices 220,
and/or networks 230. In one example implementation, client
device 210 and server device 220 may be provided in a single
device or may be provided in separate devices.

Client device 210 may include one or more devices that are
capable of communicating with server device 220 via net-
work 230. For example, client device 210 may include a
laptop computer, a personal computer, a tablet computer, a
desktop computer, a workstation computer, a smart phone, a
personal digital assistant (PDA), and/or other computation
and communication devices.

Server device 220 may include one or more server devices,
or other types of computation and communication devices,
that gather, process, and/or provide information in a manner
described herein. Server device 220 may include a device that
is capable of communicating with client device 210 (e.g., via
network 230). In one example, server device 220 may include
one or more laptop computers, personal computers, worksta-
tion computers, servers, central processing units (CPUs),
graphical processing units (GPUs), application-specific inte-
grated circuits (ASICs), field-programmable gate arrays (FP-
GAs), etc. and/or software (e.g., a simulator) executing on the

30

35

40

45

50

4

aforementioned devices. In one example, server device 220
may include TCE 240 and may perform some or all of the
functionality described herein for client device 210. Alterna-
tively, server device 220 may be omitted and client device 210
may perform all of the functionality described herein for
client device 210.

Network 230 may include a network, such as a local area
network (LAN), a wide area network (WAN), a metropolitan
area network (MAN), a telephone network, such as the Public
Switched Telephone Network (PSTN), an intranet, the Inter-
net, or a combination of networks.

TCE 240 may be provided within a computer-readable
medium of client device 210. Alternatively, or additionally,
TCE 240 may be provided in another device (e.g., server
device 220) that is accessible by client device 210. TCE 240
may include hardware or a combination of hardware and
software that provides a computing environment that allows
users to perform tasks related to disciplines, such as, but not
limited to, mathematics, science, engineering, medicine,
business, etc., more efficiently than if the tasks were per-
formed in another type of computing environment, such as an
environment that required the user to develop code in a con-
ventional programming language, such as C++, C, Fortran,
Pascal, etc. In one implementation, TCE 240 may include a
dynamically-typed programming language (e.g., the M lan-
guage, a MATLAB® language, a MATLAB-compatible lan-
guage, a MATLAB-like language, etc.) that can be used to
express problems and/or solutions in mathematical notations.

For example, TCE 240 may use an array as a basic element,
where the array may not require dimensioning. These arrays
may be used to support array-based programming where an
operation may apply to an entire set of values included in the
arrays. Array-based programming may allow array-based
operations to be treated as high-level programming that may
allow, for example, operations to be performed on entire
aggregations of data without having to resort to explicit loops
of'individual non-array operations. In addition, TCE 240 may
be adapted to perform matrix and/or vector formulations that
can be used for data analysis, data visualization, application
development, simulation, modeling, algorithm development,
etc. These matrix and/or vector formulations may be used in
many areas, such as statistics, image processing, signal pro-
cessing, control design, life sciences modeling, discrete event
analysis and/or design, state based analysis and/or design, etc.

TCE 240 may further provide mathematical functions and/
or graphical tools (e.g., for creating plots, surfaces, images,
volumetric representations, etc.). In one implementation,
TCE 240 may provide these functions and/or tools using
toolboxes (e.g., toolboxes for signal processing, image pro-
cessing, data plotting, parallel processing, etc.). Alterna-
tively, or additionally, TCE 240 may provide these functions
as block sets or in another way, such as via a library, etc.

TCE 240 may be implemented as a text-based environment
(e.g., MATLAB software; Octave; Python; Comsol Script;
MATRIXx from National Instruments; Mathematica from
Wolfram Research, Inc.; Mathcad from Mathsoft Engineer-
ing & Education Inc.; Maple from Maplesott; Extend from
Imagine That Inc.; Scilab from The French Institution for
Research in Computer Science and Control (INRIA); Vir-
tuoso from Cadence; Modelica or Dymola from Dynasim;
etc.); a graphically-based environment (e.g., Simulink® soft-
ware, Stateflow® software, SimEvents® software, Sim-
scape™ software, etc., by The MathWorks, Inc.; VisSim by
Visual Solutions; LabView® by National Instruments;
Dymola by Dynasim; SoftWIRE by Measurement Comput-
ing; WiT by DALSA Coreco; VEE Pro or SystemVue by
Agilent; Vision Program Manager from PPT Vision; Khoros

US 9,223,595 B2

5

from Khoral Research; Gedae by Gedae, Inc.; Scicos from
(INRIA); Virtuoso from Cadence; Rational Rose from IBM;
Rhopsody or Tau from Telelogic; Ptolemy from the Univer-
sity of California at Berkeley; aspects of a Unified Modeling
Language (UML) or SysML environment; etc.); or another
type of environment, such as a hybrid environment that
includes one or more of the above-referenced text-based envi-
ronments and one or more of the above-referenced graphi-
cally-based environments.

TCE 240 may include a programming language (e.g., the
MATLAB language) that may be used to express problems
and/or solutions in mathematical notations. The program-
ming language may be dynamically typed and/or array-
based. In a dynamically typed array-based computing lan-
guage, data may be contained in arrays and data types of the
data may be determined (e.g., assigned) at program execution
time.

For example, suppose a program, written in a dynamically
typed array-based computing language, includes the follow-
ing statements:

A=‘hello’

A=int32([1, 2])

A=[1.1,2.2,33].

Now suppose the program is executed, for example, in a
TCE, such as TCE 240. During run-time, when the statement
“A=‘hello’” is executed the data type of variable “A” may be
a string data type. Later when the statement “A=int32([1, 2])”
is executed the data type of variable “A” may be a 1-by-2 array
containing elements whose data type are 32 bit integers.
Later, when the statement “A=[1.1, 2.2, 3.3]” is executed,
since the language is dynamically typed, the data type of
variable “A” may be changed from the above 1-by-2 array to
a 1-by-3 array containing elements whose data types are
floating point. As can be seen by this example, data in a
program written in a dynamically typed array-based comput-
ing language may be contained in an array. Moreover, the data
type of the data may be determined during execution of the
program. Thus, in a dynamically type array-based computing
language, data may be represented by arrays and data types of
data may be determined at run-time.

TCE 240 may provide mathematical routines and a high-
level programming language suitable for non-professional
programmers and may provide graphical tools that may be
used for creating plots, surfaces, images, volumetric repre-
sentations, or other representations. TCE 240 may provide
these routines and/or tools using toolboxes (e.g., toolboxes
for signal processing, image processing, data plotting, paral-
lel processing, etc.). TCE 240 may also provide these routines
in other ways, such as, for example, via a library, local or
remote database (e.g., a database operating in a computing
cloud), remote procedure calls (RPCs), and/or an application
programming interface (API). TCE 240 may be configured to
improve runtime performance when performing computing
operations. For example, TCE 240 may include a just-in-time
(JIT) compiler.

Although FIG. 2 shows example components of environ-
ment 200, in other implementations, environment 200 may
include fewer components, different components, differently
arranged components, and/or additional components than
those depicted in FIG. 2. Alternatively, or additionally, one or
more components of environment 200 may perform one or
more other tasks described as being performed by one or more
other components of environment 200.

Example Device Architecture

FIG. 3 is an example diagram of a device 300 that may
correspond to one or more of the devices of environment 200.

10

15

20

25

30

35

40

45

50

55

60

65

6

As illustrated, device 300 may include a bus 310, a processing
unit 320, a main memory 330, a read-only memory (ROM)
340, a storage device 350, an input device 360, an output
device 370, and/or a communication interface 380. Bus 310
may include a path that permits communication among the
components of device 300.

Processing unit 320 may include one or more processors,
microprocessors, or other types of processing units that may
interpret and execute instructions. Main memory 330 may
include one or more random access memories (RAMs) or
other types of dynamic storage devices that may store infor-
mation and/or instructions for execution by processing unit
320. ROM 340 may include one or more ROM devices or
other types of static storage devices that may store static
information and/or instructions for use by processing unit
320. Storage device 350 may include a magnetic and/or opti-
cal recording medium and its corresponding drive.

Input device 360 may include a mechanism that permits a
user to input information to device 300, such as a keyboard, a
camera, an accelerometer, a gyroscope, a mouse, a pen, a
microphone, voice recognition and/or biometric mecha-
nisms, a remote control, a touch screen, a neural interface, etc.
Output device 370 may include a mechanism that outputs
information to the user, including a display, a printer, a
speaker, etc. Communication interface 380 may include any
transceiver-like mechanism that enables device 300 to com-
municate with other devices, networks, and/or systems. For
example, communication interface 380 may include mecha-
nisms for communicating with another device or system via a
network.

As described herein, device 300 may perform certain
operations in response to processing unit 320 executing soft-
ware instructions contained in a computer-readable medium,
such as main memory 330. A computer-readable medium
may be defined as a non-transitory memory device. A
memory device may include space within a single physical
memory device or spread across multiple physical memory
devices. The software instructions may be read into main
memory 330 from another computer-readable medium, such
as storage device 350, or from another device via communi-
cation interface 380. The software instructions contained in
main memory 330 may cause processing unit 320 to perform
processes described herein. Alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to implement processes described herein. Thus,
implementations described herein are not limited to any spe-
cific combination of hardware circuitry and software.

Although FIG. 3 shows example components of device
300, in other implementations, device 300 may include fewer
components, different components, differently arranged
components, and/or additional components than depicted in
FIG. 3. Alternatively, or additionally, one or more compo-
nents of device 300 may perform one or more other tasks
described as being performed by one or more other compo-
nents of device 300.

Example Technical Computing Environment

FIG. 4 is a diagram of example functional components of
TCE 240. In one implementation, the functions described in
connection with FIG. 4 may be performed by one or more
components of device 300 (FIG. 3) and/or by one or more
devices 300. As shown in FIG. 4, TCE 240 may include a
block diagram editor 410, graphical entities 420, blocks 430,
and/or an execution engine 440.

Block diagram editor 410 may include hardware or a com-
bination of hardware and software that may be used to graphi-

US 9,223,595 B2

7

cally specity models of dynamic systems. In one implemen-
tation, block diagram editor 410 may permit a userto perform
actions, such as construct, edit, display, annotate, save, and/or
print a graphical model (e.g., a block diagram that visually
and/or pictorially represents a dynamic system). In another
implementation, block diagram editor 410 may permit a user
to create and/or store data relating to graphical entities 420.

A textual interface may be provided to permit interaction
with block diagram editor 410. A user may write scripts that
perform automatic editing operations on a model using the
textual interface. For example, the textual interface may pro-
vide a set of windows that may act as a canvas for the model,
and may permit user interaction with the model. A model may
include one or more windows depending on whether the
model is partitioned into multiple hierarchical levels.

Graphical entities 420 may include hardware or a combi-
nation of hardware and software that may provide entities
(e.g., signal lines, buses, etc.) that represent how data may be
communicated between functional and/or non-functional
units and blocks 430 of a model. Blocks 430 may include
fundamental mathematical elements of a block diagram
model.

Execution engine 440 may include hardware or a combi-
nation of hardware and software that may process a graphical
model to produce simulation results, may convert the graphi-
cal model into executable code, and/or may perform other
analyses and/or related tasks. In one implementation, for a
block diagram graphical model, execution engine 440 may
translate the block diagram into executable entities (e.g., units
of execution) following the layout of the block diagram. The
executable entities may be compiled and/or executed on a
device (e.g., client device 210) to implement the functionality
specified by the model.

Graphical models may include entities with relationships
between the entities, and the relationships and/or the entities
may have attributes associated with them. The entities my
include model elements such as blocks 430 and ports. The
relationships may include model elements such as lines (e.g.,
connector lines) and references. The attributes may include
model elements such as value information and meta informa-
tion for the model element associated with the attributes.
Graphical models may be associated with configuration
information. The configuration information may include
information for the graphical model such as model execution
information (e.g., numerical integration schemes, fundamen-
tal execution period, etc.), model diagnostic information
(e.g., whether an algebraic loop should be considered an error
or result in a warning), model optimization information (e.g.,
whether model elements should share memory during execu-
tion), model processing information (e.g., whether common
functionality should be shared in code that is generated for a
model), etc.

Additionally, or alternatively, a graphical model may have
executable semantics and/or may be executable. An execut-
able graphical model may be a time based block diagram. A
time based block diagram may consist, for example, of blocks
(e.g., blocks 430) connected by lines (e.g., connector lines).
The blocks may consist of elemental dynamic systems such
as a differential equation system (e.g., to specify continuous-
time behavior), a difference equation system (e.g., to specify
discrete-time behavior), an algebraic equation system (e.g., to
specify constraints), a state transition system (e.g., to specity
finite state machine behavior), an event based system (e.g., to
specify discrete event behavior), etc. The lines may represent
signals (e.g., to specify input/output relations between blocks
or to specify execution dependencies between blocks), vari-
ables (e.g., to specify information shared between blocks),

10

15

20

25

30

35

40

45

50

55

60

65

8

physical connections (e.g., to specify electrical wires, pipes
with volume flow, rigid mechanical connections, etc.), etc.
The attributes may consist of meta information such as
sample times, dimensions, complexity (whether there is an
imaginary component to a value), data type, etc. associated
with the model elements.

In a time based block diagram, ports may be associated
with blocks (e.g., blocks 430). A relationship between two
ports may be created by connecting a line (e.g., a connector
line) between the two ports. Lines may also, or alternatively,
be connected to other lines, for example by creating branch
points. For instance, three or more ports can be connected by
connecting a line to each ofthe ports, and by connecting each
of the lines to a common branch point for all of the lines. A
common branch point for the lines that represent physical
connections may be a dynamic system (e.g., by summing all
variables of a certain type to O or by equating all variables of
a certain type). A port may be an input port, an output port, an
enable port, a trigger port, a function-call port, a publish port,
a subscribe port, an exception port, an error port, a physics
port, an entity flow port, a data flow port, a control flow port,
etc.

Relationships between blocks (e.g., blocks 430) may be
causal and/or non-causal. For example, a model may include
a block that represents a continuous-time integration block
that may be causally related to a data logging block by using
a line (e.g., a connector line) to connect an output port of the
continuous-time integration block to an input port of the data
logging block. Further, during execution of the model, the
value stored by the continuous-time integrator may change as
the current time of the execution progresses. The value of the
state of the continuous-time integrator may be available on
the output port and the connection with the input port of the
data logging block may make this value available to the data
logging block.

A sample time may be associated with the elements of a
graphical model. For example, a graphical model may include
ablock (e.g., block 430) with a continuous sample time such
as a continuous-time integration block that may integrate an
input value as time of execution progresses. This integration
may be specified by a differential equation. During execution
the continuous-time behavior may be approximated by a
numerical integration scheme that is part of a numerical
solver. The numerical solver may take discrete steps to
advance the execution time, and these discrete steps may be
constant during an execution (e.g., fixed step integration) or
may be variable during an execution (e.g., variable-step inte-
gration).

Alternatively, or additionally, a graphical model may
include a block (e.g., block 430) with a discrete sample time
such as a unit delay block that may output values of a corre-
sponding input after a specific delay. This delay may be a time
interval and this interval may determine a sample time of the
block. During execution, the unit delay block may be evalu-
ated each time the execution time has reached a point in time
where an output of the unit delay block may change. These
points in time may be statically determined based on a sched-
uling analysis of the graphical model before starting execu-
tion.

Alternatively, or additionally, a graphical model may
include a block (e.g., block 430) with an asynchronous
sample time, such as a function-call generator block that may
schedule a connected block to be evaluated at a non-periodic
time. During execution, a function-call generator block may
evaluate an input and when the input attains a specific value
when the execution time has reached a point in time, the

US 9,223,595 B2

9

function-call generator block may schedule a connected
block to be evaluated at this point in time and before advanc-
ing execution time.

Further, the values of attributes of a graphical model may
be inferred from other elements of the graphical model or
attributes of the graphical model. For example, the graphical
model may include a block (e.g., block 430), such as a unit
delay block, that may have an attribute that specifies a sample
time of the block. When a graphical model has an execution
attribute that specifies a fundamental execution period, the
sample time of the unit delay block may be inferred from this
fundamental execution period.

As another example, the graphical model may include two
unit delay blocks (e.g., blocks 430) where the output of the
first of the two unit delay blocks is connected to the input of
the second of the two unit delay block. The sample time of the
first unit delay block may be inferred from the sample time of
the second unit delay block. This inference may be performed
by propagation of model element attributes such that after
evaluating the sample time attribute of the second unit delay
block, a graph search proceeds by evaluating the sample time
attribute of the first unit delay block since it is directly con-
nected to the second unit delay block.

The values of attributes of a graphical model may be set to
characteristics settings, such as one or more inherited set-
tings, one or more default settings, etc. For example, the data
type of a variable that is associated with a block (e.g., block
430) may be set to a default such as a double. Because of the
default setting, an alternate data type (e.g., a single, an integer,
a fixed point, etc.) may be inferred based on attributes of
elements that the graphical model comprises (e.g., the data
type of a variable associated with a connected block) and/or
attributes of the graphical model. As another example, the
sample time of a block may be set to be inherited. In case of
an inherited sample time, a specific sample time may be
inferred based on attributes of elements that the graphical
model comprises and/or attributes of the graphical model
(e.g., a fundamental execution period).

Although FIG. 4 shows example functional components of
TCE 240, in other implementations, TCE 240 may include
fewer functional components, different functional compo-
nents, differently arranged functional components, and/or
additional functional components than depicted in FIG. 4.
Alternatively, or additionally, one or more functional compo-
nents of TCE 240 may perform one or more other tasks
described as being performed by one or more other functional
components of TCE 240.

Example Technical Computing Environment
Operations

FIG. 5 is a diagram of example operations 500 capable of
being performed by TCE 240. TCE 240 may include the
features described above in connection with, for example, one
or more of FIGS. 1-4. As illustrated in FIG. 5, TCE 240 may
include a testing component 510. The functions described in
connection with testing component 510 may be performed by
one or more components of device 300 (FIG. 3) and/or by one
or more devices 300.

As further shown in FIG. 5, testing component 510 may
receive results generated by TCE code 520. TCE code 520
may include text-based code that may require further process-
ing to execute, binary code that may be executed, text files
that may be executed in conjunction with other executables,
etc. In one example, TCE code 520 may be executed to
generate a first result 530 that includes first data. TCE code
520 may again be executed to generate a second result 540

10

20

25

30

35

40

45

50

55

60

65

10

that includes second data. In one example, first result 530 may
be generated by a simulation version of TCE code 520, and
second result 540 may be generated by an executable version
of TCE code 520. The first data and the second data may be
the same type or different types, and may include floating
point values, fixed point values, cell arrays, structure arrays,
simulation output data, numeric data, logical data, string data,
object data, etc. Testing component 510 may receive a test
case 550to be applied to first result 530 and second result 540.
For example, test case 550 may include a test (e.g., IsE-
qualTo) to determine whether first result 530 is equivalent to
second result 540.

Testing component 510 may determine whether a com-
parator, of testing component 510, supports the first data and
the second data. If the comparator does not support the first
data and/or the second data, testing component 510 may
provide (e.g., display) an indication of unsupported data in
first result 530 and/or second result 540. If the comparator
supports the first data and the second data, testing component
510 may utilize the comparator to select comparison logic
that is appropriate for the first data of first result 530 and the
second data of second result 540.

In one example implementation, the comparator may
include a set (e.g., a list) of comparison logic that may be used
to support different data. For example, the list may include
comparison logic for cell arrays, structure arrays, numeric
data, logical data, string data, object data, etc. Testing com-
ponent 510 may determine first comparison logic of the list
that matches the first data, and may determine second com-
parison logic of the list that matches the second data. The
comparator may output the first comparison logic as the
selected comparison logic that is appropriate for the first data
of first result 530. The comparator may output the second
comparison logic as the selected comparison logic that is
appropriate for the second data of second result 540.

In one example, the data structures handled by the com-
parator may need to be compared in a numerically stable
manner. Such data structures may include numerical values,
such as floating point values, and values inside more complex
data structures, such as cell arrays, structure arrays, output
data, recursive data, etc. The comparator may provide the
numerical comparison of such complex and arbitrary data
structures.

Testing component 510 may compare first result 530 and
second result 540, using the selected comparison logic and
based on test case 550, to determine whether first result 530 is
equal to second result 540. Testing component 510 may out-
put a determination 560 of whether first result 530 is equal to
second result 540. If first result 530 equals second result 540,
testing component 510 may output (e.g., display) and/or
store, as determination 560, diagnostic information 570 indi-
cating the equivalence of first result 530 and second result
540. For example, as shown in FIG. 5, diagnostic information
570 may state: “The first result IsEqualTo the second result.”
If first result 530 does not equal second result 540, testing
component 510 may output (e.g., display) and/or store, as
determination 560, diagnostic information 570 indicating the
nonequivalence of first result 530 and second result 540.
Diagnostic information 570 may provide information identi-
fying a location of the nonequivalence in first result 530
and/or second result 540. The location information may
include a diagnostic code (e.g., a recursive path) that identi-
fies where the nonequivalence occurs in first result 530 and/or
second result 540.

In order to compare disparate data structures, typical test-
ing systems define a method (e.g., an “equals” method) for
each different data structure generated by code (e.g., TCE

US 9,223,595 B2

11

code 520). This may require modification of the code prior to
testing. In contrast, testing component 510 may permit a
different definition of equality to be used during testing than
used during execution of TCE code 520. Such an arrangement
may enable testing component 510 to utilize different com-
parison logic during the test of first result 530 and second
result 540, without the need to modify TCE code 520 prior to
testing. Furthermore, testing component 510 may permit first
result 530 and second result 540 to be compared, while typi-
cal testing systems do not permit such a comparison. In one
example implementation, testing component 510 may recur-
sively reuse the comparison logic for many different data
structures structured within complex data structures. This
may prevent the comparator from having to re-implement a
recursive step.

In one example implementation, the comparator may
include APIs of abstract methods (e.g., satisfiedBy, getDiag-
nosticFor, supports, etc.). Alternatively, or additionally, the
comparator may include a recursive API (e.g., Container-
Comparator) and acomposite API (e.g., Comparatorlist) that
enable testing component 510 to recursively use the compari-
son logic on complex data structures.

Although FIG. 5 shows example operations capable of
being performed by TCE 240, in other implementations, TCE
240 may perform fewer operations, different operations, and/
or additional operations than depicted in FIG. 5. Alterna-
tively, or additionally, one or more components of FIG. 5 may
perform one or more other tasks described as being per-
formed by one or more other components of FIG. 5.

Example Testing Component Operations

FIG. 6 is a diagram of example functional components of
testing component 510 (FIG. 5). The functions described in
connection with testing component 510 may be performed by
one or more components of device 300 (FIG. 3) and/or by one
or more devices 300. As shown in FIG. 6, testing component
510 may include a comparator component 600 and determi-
nation component 610.

Comparator component 600 may provide an API that can
be used in conjunction with a test case (e.g., an IsEqualTo
constraint) and that may allow a tester to determine compari-
son logic to use for the test (e.g., the equality comparison
provided by the IsEqualTo constraint). As shown in FIG. 6,
comparator component 600 may receive first result 530 and
second result 540, and may determine whether comparator
component 600 supports the first data of first result 530 and
the second data of second result 540.

If comparator component 600 does not support the first
data of first result 530 and/or the second data of second result
540, comparator component 600 may provide (e.g., display)
anindication 620 of unsupported data in first result 530 and/or
second result 540. If comparator component 600 supports the
first data of first result 530 and the second data of second
result 540, comparator component 600 may select compari-
son logic 630 that is appropriate for the first data of first result
530 and the second data of second result 540. Comparator
component 600 may provide comparison logic 630 to deter-
mination component 610. Comparison logic 630 may include
comparison methods that may be applied to the first data of
first result 530 and the second data of second result 540.

Determination component 610 may receive first result 530,
second result 540, test case 550, and comparison logic 630.
Determination component 610 may compare first result 530
and second result 540, using the selected comparison logic
630 and based on test case 550, to determine whether first
result 530 is equal to second result 540. Determination com-

15

25

30

40

45

55

12

ponent 610 may output determination 560 of whether first
result 530 is equal to second result 540. If first result 530
equals second result 540, determination component 610 may
output (e.g., display) and/or store, as determination 560, diag-
nostic information indicating the equivalence of first result
530 and second result 540. If first result 530 does not equal
second result 540, determination component 610 may output
(e.g., display) and/or store, as determination 560, diagnostic
information indicating the nonequivalence of first result 530
and second result 540.

Although FIG. 6 shows example functional components of
testing component 510, in other implementations, testing
component 510 may include fewer functional components,
different functional components, differently arranged func-
tional components, and/or additional functional components
than depicted in FIG. 6. Alternatively, or additionally, one or
more functional components of testing component 510 may
perform one or more other tasks described as being per-
formed by one or more other functional components of test-
ing component 510.

FIG. 7 is a diagram of example operations 700 capable of
being performed by testing component 510. Testing compo-
nent 510 may include the features described above in connec-
tion with, for example, one or more of FIGS. 1, 5, and 6. As
illustrated in FIG. 7, testing component 510 may receive a
first result (a) 710 and a second result (b) 720 generated by
code, such as TCE code 520. In one example, first result 710
may include a first data, and second result 720 may include a
second data. The first data and the second data may be the
same type or different types, and may include floating point
values, cell arrays, structure arrays, simulation output data,
numeric data, logical data, string data, object data, etc.

As further shown in FIG. 7, testing component 510 may
receive a test case 730 to be applied to first result 710 and
second result 720. For example, test case 730 may include a
test (e.g., testCase.assertThat) to determine whether first
result 710 is equivalent to second result 720. Testing compo-
nent 510 may generate a test 740 based on first result 710,
second result 720, and test case 730. For example, testing
component 510 may generate test 740 with the syntax
testCase.assertThat(a, IsEqualTo(b, ‘Using’, CustomCom-
parator)). Test 740 may determine whether first result (a) 710
is equal to second result (b) 720 using a custom comparator
(e.g., CustomComparator).

Testing component 510 may determine whether the custom
comparator supports the first data of first result 710 and the
second data of second result 720. If the custom comparator
does not support the first data and/or the second data, testing
component 510 may provide (e.g., display) an indication 750
of unsupported data in first result 710 and/or second result
720. If the custom comparator supports the first data and the
second data, testing component 510 may utilize the custom
comparator to select comparison logic that is appropriate for
the first data of first result 710 and the second data of second
result 720.

Testing component 510 may compare first result 710 and
second result 720, using the selected comparison logic and
based on test 740, to determine whether first result 710 is
equal to second result 720. If first result 710 equals second
result 720, testing component 510 may output (e.g., display)
and/or store information 760 (e.g., a=b) indicating the equiva-
lence of first result 710 and second result 720. If first result
710 does not equal second result 720, testing component 510
may output (e.g., display) and/or store information 770 (e.g.,
a=b) indicating the nonequivalence of first result 710 and
second result 720.

US 9,223,595 B2

13

Although FIG. 7 shows example operations capable of
being performed by testing component 510, in other imple-
mentations, testing component 510 may perform fewer
operations, different operations, and/or additional operations
than depicted in FIG. 7. Alternatively, or additionally, one or
more components of FIG. 7 may perform one or more other
tasks described as being performed by one or more other
components of FIG. 7.

FIG. 8 is a diagram of example operations 800 capable of
being performed by comparator component 600. Comparator
component 600 may include the features described above in
connection with, for example, one or more of FIGS. 1 and 5-7.
As shown in FIG. 8, comparator component 600 may include
a comparator list 810 with multiple comparison logic 830. In
one example, comparison logic 830 of comparator list 810
may handle several different data structures received by test-
ing component 510 for testing. For example, comparator list
810 may include comparison logic 830 for cell arrays (e.g.,
CellComparator), comparison logic 830 for structure arrays
(e.g., StructComparator), comparison logic 830 for numeric
data (e.g., NumericComparator), comparison logic 830 for
logical data (e.g., LogicalComparator), comparison logic 830
for string data (e.g., StringComparator), comparison logic
830 for object data (e.g., ObjectComparator), etc.

In one example implementation, comparator component
600 may receive a result that includes particular data, and may
determine whether comparator list 810 includes comparison
logic 830 that supports the particular data. If comparator list
810 includes comparison logic 830 that supports the particu-
lar data, comparator component 600 may select the first com-
parison logic 830, from comparator list 810, which supports
the particular data. Alternatively, or additionally, if compara-
tor list 810 includes multiple comparison logic 830 that sup-
ports the particular data, comparator component 600 may
select one of the multiple comparison logic 830 from com-
parator list 810.

Some data structures, such as cell arrays and structure
arrays, may contain arbitrarily complex elements that also
need to be compared. For such data structures, comparator
600 may recursively select comparison logic 830, from com-
parator list 810, for the different complex elements. For
example, as shown in FIG. 8, comparator 600 may receive a
result 820 that includes the syntax data={5, ‘string’, input-
Parser}. Comparator 600 may determine that data is a cell
array, and may select comparison logic 830 for cell arrays
(e.g., CellComparator). Comparator 600 may examine each
element of the data cell array, and may determine that a first
element (e.g., ‘5°) is a double value. Since comparison logic
830 for cell arrays (e.g., CellComparator) and comparison
logic 830 for structure arrays (e.g., StructComparator) do not
support double values, comparator 600 may select, for the
first element, comparison logic 830 for numeric data (e.g.,
NumericComparator). Comparator 600 may determine that a
second element (e.g., string) is string data, and may select, for
the second element, comparison logic 830 for string data
(e.g., StringComparator). Comparator 600 may determine
that a third element (e.g., inputParser) is object data, and may
select, for the third element, comparison logic 830 for object
data (e.g., ObjectComparator).

Although result 820 may include a simple data structure,
comparator 600 may permit comparison, using appropriate
comparison logic 830, of data structures that may be signifi-
cantly more complex with multiple levels of nesting. Further-
more, comparator 600 may ensure that numeric and/or non-
numeric values are compared with appropriate tolerances,
and that the tolerances propagate to all numeric and/or non-
numeric values in a data structure. Alternatively, or addition-

20

25

35

40

45

55

14

ally, comparator 600 may apply modifiers to comparisons for
non-numeric data types. For example, comparator 600 may
compare strings without regard to whitespace or case differ-
ences, may compare numeric values without regard to class
(type) differences, etc. The modifiers may be propagated to
appropriate values in a data structure.

In one example implementation, comparator list 810 may
correspond to a list (e.g., the ComparatorList) of comparison
logic 830 that may be selected for a comparison operation.
The ComparatorList may provide the list of comparison logic
830 to comparator component 600 (e.g., the ContainerCom-
parator) before the ContainerComparator performs the com-
parison operation. The ContainerComparator may then have
access to the full list of comparison logic 830 and may there-
fore compare any data supported by the ComparatorList. The
ContainerComparator may support, in recursion, any data
that is support the ComparatorList.

Although FIG. 8 shows example operations capable of
being performed by comparator component 600, in other
implementations, comparator component 600 may perform
fewer operations, different operations, and/or additional
operations than depicted in FIG. 8. Alternatively, or addition-
ally, one or more components of FIG. 8 may perform one or
more other tasks described as being performed by one or more
other components of FIG. 8.

Example Process

FIGS. 9 and 10 are flow charts of an example process 900
for comparing disparate data in arbitrarily complex data
structures. In one implementation, process 900 may be per-
formed by client device 210/TCE 240. Alternatively, or addi-
tionally, process 900 may be performed by another device or
a group of devices separate from or including client device
210/TCE 240, such as server device 220.

As shown in FIG. 9, process 900 may include receiving a
first result that includes first data (block 910), and receiving a
second result that includes second data (block 920). For
example, in an implementation described above in connec-
tion with FIG. 5, testing component 510 may receive results
generated by TCE code 520. TCE code 520 may be executed
to generate first result 530 that includes first data. TCE code
520 may again be executed to generate second result 540 that
includes second data. In one example, first result 530 may be
generated by a simulation version of TCE code 520, and
second result 540 may be generated by an executable version
of TCE code 520. The first data and the second data may be
the same type or different types, and may include floating
point values, cell arrays, structure arrays, simulation output
data, numeric data, logical data, string data, object data, etc.

As further shown in FIG. 9, process 900 may include
determining whether a comparator supports the first data and
the second data (block 930). If the comparator does not sup-
port the first data and/or the second data (block 930—NO),
process 900 may include providing an indication of unsup-
ported data (block 940). For example, in an implementation
described above in connection with FIG. 5, testing compo-
nent 510 may determine whether a comparator, of testing
component 510, supports the first data and the second data. If
the comparator does not support the first data and/or the
second data, testing component 510 may provide (e.g., dis-
play) an indication of unsupported data in first result 530
and/or second result 540.

Returning to FIG. 9, if the comparator supports the first
data and the second data (block 930—YES), process 900 may
include utilizing the comparator to select comparison logic
for the first result and the second result (block 950), and

US 9,223,595 B2

15

comparing the first result and the second result, with the
comparison logic, to determine if the first result is equal or
unequal to the second result (block 960). For example, in an
implementation described above in connection with FIG. 5, if
the comparator supports the first data and the second data,
testing component 510 may utilize the comparator to select
comparison logic that is appropriate for the first data of first
result 530 and the second data of second result 540. Testing
component 510 may compare first result 530 and second
result 540, using the selected comparison logic and based on
test case 550, to determine whether first result 530 is equal to
second result 540.

As further shown in FIG. 9, process 900 may include
outputting and/or storing the determination of equality or
inequality (block 970). For example, in an implementation
described above in connection with FIG. 5, testing compo-
nent 510 may output determination 560 of whether first result
530 is equal to second result 540. If first result 530 equals
second result 540, testing component 510 may output (e.g.,
display) and/or store, as determination 560, diagnostic infor-
mation 570 indicating the equivalence of first result 530 and
second result 540. If first result 530 does not equal second
result 540, testing component 510 may output (e.g., display)
and/or store, as determination 560, diagnostic information
570 indicating the nonequivalence of first result 530 and
second result 540.

Process block 950 may include the process blocks depicted
in FIG. 10. As shown in FIG. 10, process block 950 may
include determining first comparison logic, of a comparator
list, that matches the first data (block 1000), determining
second comparison logic, of the comparator list, that matches
the second data (block 1010), and outputting the first com-
parison logic and the second comparison logic as the selected
comparison logic for the first result and the second result
(block 1020). For example, in an implementation described
above in connection with FIG. 5, the comparator may include
a list of comparison logic for cell arrays, structure arrays,
numeric data, logical data, string data, object data, etc. Test-
ing component 510 may determine first comparison logic of
the list that matches the first data, and may determine second
comparison logic of the list that matches the second data. The
comparator may output the first comparison logic as the
selected comparison logic that is appropriate for the first data
of first result 530. The comparator may output the second
comparison logic as the selected comparison logic that is
appropriate for the second data of second result 540.

CONCLUSION

Systems and/or methods described herein may compare
disparate data in arbitrarily complex data structures in order
to determine whether the data structures are equivalent (e.g.,
pass or fail a qualification test). In one example, the systems
and/or methods may provide a comparator API that enables a
tester of program code to compare complex data structures
(e.g., cell arrays, structure arrays, etc.). The data structures
may include many different types of data and each data type
may require different methods of comparison. The single
comparator API may recursively compare all elements of a
data structure so that each element may utilize comparison
logic that is appropriate for that element.

The foregoing description of implementations provides
illustration and description, but is not intended to be exhaus-
tive or to limit the implementations to the precise form dis-
closed. Modifications and variations are possible in light of
the above teachings or may be acquired from practice of the
implementations.

10

15

20

25

30

35

40

45

50

55

60

65

16

For example, while series of blocks have been described
with regard to FIGS. 9 and 10, the blocks and/or the order of
the blocks may be modified in other implementations. Fur-
ther, non-dependent blocks may be performed in parallel.

It will be apparent that example aspects, as described
above, may be implemented in many different forms of soft-
ware, firmware, and hardware in the implementations illus-
trated in the figures. The actual software code or specialized
control hardware used to implement these aspects should not
be construed as limiting. Thus, the operation and behavior of
the aspects were described without reference to the specific
software code—it being understood that software and control
hardware could be designed to implement the aspects based
on the description herein.

Further, certain portions of the implementations may be
implemented as a “component” that performs one or more
functions. This component may include hardware, such as a
processor, an application-specific integrated circuit (ASIC),
ora field-programmable gate array (FPGA), ora combination
of hardware and software.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
the specification. In fact, many of these features may be
combined in ways not specifically recited in the claims and/or
disclosed in the specification. Although each dependent claim
listed below may directly depend on only one other claim, the
disclosure of the specification includes each dependent claim
in combination with every other claim in the claim set.

No element, act, or instruction used in the present applica-
tion should be construed as critical or essential unless explic-
itly described as such. Also, as used herein, the article “a” is
intended to include one or more items. Where only one item
is intended, the term “one” or similar language is used. Fur-
ther, the phrase “based on” is intended to mean “based, at least
in part, on” unless explicitly stated otherwise.

What is claimed is:
1. A device comprising:
one or more processors to:
receive a first result generated by code,
the first result including first data,
receive a second result generated by the code,
the second result including second data,
determine whether a comparator supports the first data
and the second data,
utilize, if the comparator supports the first data and the
second data, the comparator to select comparison
logic for the first data of the first result and for the
second data of the second result,
compare, if the comparator supports the first data and the
second data, the first result and the second result,
using the selected comparison logic, to obtain a deter-
mination of whether the first result is equivalent to the
second result,
output or store, if the comparator supports the first data
and the second data, the determination of whether the
first result is equivalent to the second result; and
provide an indication of unsupported data if the com-
parator does not support the first data or the second
data.
2. The device of claim 1, where, when utilizing the com-
parator, the one or more processors are further to:
determine first comparison logic of a list, of the compara-
tor, that matches the first data,
determine second comparison logic of the list that matches
the second data, and

US 9,223,595 B2

17

output the first comparison logic and the second compari-
son logic as the selected comparison logic for the first
data of the first result and for the second data of the
second result, respectively.

3. The device of claim 1, where each of the first data and the 5

second data include one or more of:

a floating point value,

a cell array,

a structure array,

simulation output data,

numeric data,

logical data,

string data, or

object data.

4. The device of claim 1, where the selected comparison 15

logic includes one or more of:

comparison logic for floating or fixed point values,

comparison logic for cell arrays,

comparison logic for structure arrays,

comparison logic for simulation output data,

comparison logic for numeric data,

comparison logic for logical data,

comparison logic for string data, or

comparison logic for object data.

5. The device of claim 1, 25
where the first result includes multiple data, and
where the one or more processors are further to:
utilize the comparator recursively to select multiple
comparison logic for the multiple data of the first
result. 30
6. The device of claim 1,
where the second result includes multiple data, and
where the one or more processors are further to:
utilize the comparator recursively to select multiple
comparison logic for the multiple data of the second 35
result.
7. A method, comprising:
receiving a first result generated by code,
the first result including first data, and
the receiving the first result being performed by one or 40
more devices;
receiving a second result generated by the code,
the second result including second data, and
the receiving the second result being performed by the
one or more devices; 45
determining whether a comparator supports the first data
and the second data,
the determining being performed by the one or more
devices;
utilizing, if the comparator supports the first data and the 50
second data, the comparator to select comparison logic
for the first data of the first result and for the second data
of the second result,
the utilizing the comparator being performed by the one
or more devices if the comparator supports the first 55
data and the second data;
comparing, if the comparator supports the first data and the
second data, the first result and the second result, using
the selected comparison logic, to obtain a determination
of whether the first result is equivalent to the second 60

result,
the comparing the first result and the second result being
performed by the one or more devices if the compara-
tor supports the first data and the second data; and
outputting or storing, if the comparator supports the first 65
data and the second data, the determination of whether
the first result is equivalent to the second result,

18

the outputting or storing the determination being per-
formed by the one or more devices if the comparator
supports the first data and the second data; and
providing an indication of unsupported data if the com-
parator does not support the first data or the second data,
the providing the indication being performed by the one
ormore devices if the comparator does not support the
first data and the second data.
8. The method of claim 7, where utilizing the comparator

10 further comprises:

determining first comparison logic of a list, of the com-
parator, that matches the first data;

determining second comparison logic of the list that
matches the second data; and

outputting the first comparison logic and the second com-
parison logic as the selected comparison logic for the
first data of the first result and for the second data of the
second result, respectively.

9. The method of claim 7, where each of the first data and

20 the second data include one or more of:

a floating point value,
a cell array,
a structure array,
simulation output data,
numeric data,
logical data,
string data, or
object data.
10. The method of claim 7, where the selected comparison
logic includes one or more of:
comparison logic for floating or fixed point values,
comparison logic for cell arrays,
comparison logic for structure arrays,
comparison logic for simulation output data,
comparison logic for numeric data,
comparison logic for logical data,
comparison logic for string data, or
comparison logic for object data.
11. The method of claim 7,
where the first result includes multiple data, and
where the method further comprises:
utilizing the comparator recursively to select multiple
comparison logic for the multiple data of the first
result.
12. The method of claim 7,
where the second result includes multiple data, and
where the method further comprises:
utilizing the comparator recursively to select multiple
comparison logic for the multiple data of the second
result.
13. The method of claim 7, further comprising:
receiving a test case to be applied to the first result and the
second result,
the test case specifying a test to obtain the determination
of whether the first result is equivalent to the second
result, and
the comparing being performed based on the test case.
14. One or more non-transitory computer-readable media
storing instructions, the instructions comprising:
one or more instructions that, when executed by a proces-
sor of a device, cause the processor to:
receive a first result generated by code,
the first result including first data,
receive a second result generated by the code,
the second result including second data,
determine whether a comparator supports the first data
and the second data,

US 9,223,595 B2

19

provide an indication of unsupported data when the
comparator does not support the first data or the sec-
ond data,

utilize, if the comparator supports the first data and the
second data, the comparator to select comparison
logic for the first data of the first result and for the
second data of the second result,

compare, if the comparator supports the first data and the
second data, the first result and the second result,
using the selected comparison logic, to obtain a deter-
mination of whether the first result is equivalent to the
second result,

output or store, if the comparator supports the first data
and the second data, the determination of whether the
first result is equivalent to the second result, and

provide an indication of unsupported data if the com-
parator does not support the first data or the second
data.

15. The one or more non-transitory computer-readable
media of claim 14, where the instructions further comprise:

one or more instructions that, when executed by the pro-

cessor, cause the processor to:

determine first comparison logic of a list, of the com-
parator, that matches the first data,

determine second comparison logic of the list that
matches the second data, and

output the first comparison logic and the second com-
parison logic as the selected comparison logic for the
first data of the first result and for the second data of
the second result, respectively.

16. The one or more non-transitory computer-readable
media of claim 14, where each of the first data and the second
data include one or more of:

a floating point value,

a cell array,

a structure array,

simulation output data,

numeric data,

5

20

25

20

logical data,

string data, or

object data.

17. The one or more non-transitory computer-readable
media of claim 14, where the selected comparison logic
includes one or more of:

comparison logic for floating or fixed point values,

comparison logic for cell arrays,

comparison logic for structure arrays,

comparison logic for simulation output data,

comparison logic for numeric data,

comparison logic for logical data,

comparison logic for string data, or

comparison logic for object data.

18. The one or more non-transitory computer-readable
media of claim 14,

where the first result includes multiple data, and

where the instructions further comprise:

one or more instructions that, when executed by the pro-

cessor, cause the processor to:

utilize the comparator recursively to select multiple
comparison logic for the multiple data of the first
result.

19. The one or more non-transitory computer-readable
media of claim 14,

where the second result includes multiple data, and

where the instructions further comprise:

one or more instructions that, when executed by the pro-

cessor, cause the processor to:

utilize the comparator recursively to select multiple
comparison logic for the multiple data of the second
result.

20. The one or more non-transitory computer-readable
media of claim 14,

where the first data is of a first type,

where the second data is of a second type, and

where the second type is different from the first type.

#* #* #* #* #*

